
Binghamton

University

CS-220

Spring 2016

IA32 vs. IA64

Computer Systems 3.7

Binghamton

University

CS-220

Spring 2016

Naming Convention Conflict
I call this the

“top of the stack”

I call this the
“bottom of the stack”

Binghamton

University

CS-220

Spring 2016

Why 64 bit addresses?

• 32 bit address space
• 0x0000 0000 – xFFFF FFFF

• 232 bytes = 4G

• if you put 3200 chars on a page, that’s a stack of paper about 140 meters

• 64 bit address space
• 0x0000 0000 0000 0000 – 0xFFFF FFFF FFFF FFFF

• 264 bytes = 16 exbibytes (4G x 4G) =~ 1.84 x 1019

• Squares the amount of memory that can be addressed!

• That’s twice from the earth to the sun and back!

Binghamton

University

CS-220

Spring 2016

But that’s not all that changed!

• IA64 has a whole new set of conventions!

• We won’t study, but we will go through an example

Binghamton

University

CS-220

Spring 2016

C Code…

int main(int argc, char **argv) {

int x,y;

x=atoi(argv[1]); y=atoi(argv[2]);

swap(&x,&y);

}

void swap(int *xp, int *yp) {

int t0 = *xp;

int t1 = *yp;

*xp = t1;

*yp = t0;

}

See http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2016/examples/xmp_swap/

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2016/examples/xmp_swap/

Binghamton

University

CS-220

Spring 2016

Stack before OS transfers to main…

0xfffc

(ebp) argv

argc=2

(esp) return to OS

0x0000

Binghamton

University

CS-220

Spring 2016

X86 prologue for “main”

main: pushl %ebp ; save base pointer on stack

movl %esp, %ebp ; Reset base pointer to current stack pointer

andl $-16, %esp ; esp = esp & 0xfff0 – start on qword boundary

subl $32, %esp; Allocate 32 bytes for locals (int x,y)

Binghamton

University

CS-220

Spring 2016

main preamble
0xfffc

(ebp) argv

argc=2

return to OS

(esp) old ebp

0x0000

main: pushl %ebp
movl %esp, %ebp
andl $-16, %esp
subl $32, %esp

Binghamton

University

CS-220

Spring 2016

main preamble
0xfffc

argv

argc=2

return to OS

(esp), (ebp) old ebp

0x0000

main: pushl %ebp
movl %esp, %ebp
andl $-16, %esp
subl $32, %esp

Binghamton

University

CS-220

Spring 2016

main preamble
0xfffc

argv

argc=2

return to OS

(esp), (ebp) old ebp

0x0000

main: pushl %ebp
movl %esp, %ebp
andl $-16, %esp
subl $32, %esp

Binghamton

University

CS-220

Spring 2016

main preamble
0xfffc

argv

argc=2

return to OS

(ebp) old ebp

x

y

(esp) …

0x0000

main: pushl %ebp
movl %esp, %ebp
andl $-16, %esp
subl $32, %esp

Binghamton

University

CS-220

Spring 2016

Stack after main preamble…

0xfffc

(ebp)+12 argv

argc

return to OS

(ebp) old ebp

x

y

(esp) …

0x0000

Binghamton

University

CS-220

Spring 2016

x=atoi(argv[1])

movl 12(%ebp), %eax

addl $4, %eax

movl (%eax), %eax

movl %eax, (%esp)

call atoi

movl %eax, 28(%esp)

argv argv[0]

argv[1]

argv[2]

+4

+8

‘3’ 0x00

Binghamton

University

CS-220

Spring 2016

y=atoi(argv[2]);

movl 12(%ebp), %eax

addl $8, %eax

movl (%eax), %eax

movl %eax, (%esp)

call atoi

movl %eax, 24(%esp)

argv argv[0]

argv[1]

argv[2]

+4

+8 ‘5’ 0x00

Binghamton

University

CS-220

Spring 2016

Stack after atoi calls…

0xfffc

(ebp)+12 argv

argc

return to OS

(ebp) old ebp

x=3

y=5

(esp) …

0x0000

Binghamton

University

CS-220

Spring 2016

main invocation of swap
0xfffc

(ebp)+12 argv

argc

return to OS

(ebp) old ebp

x=3

y=5

…

&y

(esp)

0x0000

leal 24(%esp), %eax
movl %eax, 4(%esp)
leal 28(%esp), %eax
movl %eax, (%esp)
call swap

Binghamton

University

CS-220

Spring 2016

main invocation of swap
0xfffc

(ebp)+12 argv

argc

return to OS

(ebp) old ebp

x=3

y=5

…

&y

(esp) &x

0x0000

leal 24(%esp), %eax
movl %eax, 4(%esp)
leal 28(%esp), %eax
movl %eax, (%esp)
call swap

Binghamton

University

CS-220

Spring 2016

Stack at start of swap…

0xfffc

(ebp)+12 argv

argc

return to OS

(ebp) old ebp

x=3

y=5

…

&y

&x

(esp) return to main

0x0000

Binghamton

University

CS-220

Spring 2016

swap prologue

swap: pushl %ebp

movl %esp, %ebp

subl $16, %esp

Binghamton

University

CS-220

Spring 2016

swap prologue
0xfffc

(ebp)+12 argv

argc

return to OS

(ebp) old ebp

x=3

y=5

…

&y

&x

return to main

(esp) main’s ebp

0x0000

swap: pushl %ebp

movl %esp, %ebp

subl $16, %esp

Binghamton

University

CS-220

Spring 2016

swap prologue
0xfffc

(ebp)+12 argv

argc

return to OS

old ebp

x=3

y=5

…

&y

&x

return to main

(esp),(ebp) main’s ebp

0x0000

swap: pushl %ebp

movl %esp, %ebp

subl $16, %esp

Binghamton

University

CS-220

Spring 2016

Stack after swap prologue

0xfffc

x=3

y=5

…

&y

&x

return to main

(ebp) main’s ebp

t0

t1

(esp) …

0x0000

Binghamton

University

CS-220

Spring 2016

swap guts

movl 8(%ebp), %eax ; eax=&x

movl (%eax), %eax ; eax=*(&x)=x=3

movl %eax, -4(%ebp) ; t0=eax=3

movl 12(%ebp), %eax ; eax=&y

movl (%eax), %eax ; eax=*(&y)= y=5

movl %eax, -8(%ebp) ; t1=eax=5

movl 8(%ebp), %eax ; eax=&x

movl -8(%ebp), %edx ; edx=t1=5

movl %edx, (%eax) ; *eax (or x)=edx=5

movl 12(%ebp), %eax ; eax=&y

movl -4(%ebp), %edx ; edx=t0=3

movl %edx, (%eax) ; *eax (or y)=3

Binghamton

University

CS-220

Spring 2016

Stack after swap guts

0xfffc

x=5

y=3

…

&y

&x

return to main

(ebp) main’s ebp

t0=3

t1=5

(esp) …

0x0000

Binghamton

University

CS-220

Spring 2016

Stack after swap return

0xfffc

(ebp) old ebp

x=5

y=3

…

&y

(esp) &x

return to main

main’s ebp

t0=3

t1=5

…

0x0000

Binghamton

University

CS-220

Spring 2016

IA64 Register Conventions

• First four parameters are contained in registers:
%RDI, %RSI, %RCX, %RDX

• Local Variables kept in registers:
e.g. %RBP, %RBX

• Return value: %RAX

• Bottom of Stack: %RSP

Binghamton

University

CS-220

Spring 2016

IA64 Stack Usage

• No longer use %RBP to keep track of “top of stack frame”

• Require %RSP is the same before/after a call (among others)

• Use stack to keep saved state

• Use stack for parameters if there are more than 4

• Use stack for local variables if you run out of registers

• Use stack for return address

• Only use stack if necessary

Binghamton

University

CS-220

Spring 2016

64-bit code for swap

• Operands passed in registers
• 64-bit pointers
• First (xp) in %rdi,
• second (yp) in %rsi

• All local variables in registers
• t0 in %eax, t1 in %edx

• No stack operations required

• 32-bit data
• Data held in registers %eax and %edx
• movl operation

Body

Set
Up

Finish

swap:

movl (%rdi), %edx

movl (%rsi), %eax

movl %eax, (%rdi)

movl %edx, (%rsi)

ret

