Binghamton CS-220

University Spring 2016

|A32 vs. |AG4

Computer Systems 3.7

Binghamton CS-220

Spring 2016

University

Naming Convention Conflict

[call this the

240 Chapter 3 Machine-Level Representation of Programs

“top of the stack”

Figure 3.25 Stack “bottom”
General stack frame 3
structure. The stack
can be used for passing
arguments, for storing .
return information, for
saving registers, and for

» Earlier frames

local storage. Portions .
may be omitted when not
needed.
Argument n
Frame for calling
Increasing . function P
address 4
Argument 7 }
Return address
J

Saved registers

o [call this the

Frame for executing
Local variables [function Q

| “bottom of the stack”

Argument
build area

Stack pointer
%hrsp

Stack “top”

Binghamton CS-220

University Spring 2016

Why 64 bit addresses?

* 32 bit address space
* 0x0000 0000 - xFFFF FFFF
« 232 bytes = 4G
* if you put 3200 chars on a page, that's a stack of paper about 140 meters

* 64 bit address space
* 0x0000 0000 0000 0000 - OxFFFF FFFF FFFF FFFF
« 2%% bytes = 16 exbibytes (4G x 4G) =~ 1.84x 101°
* Squares the amount of memory that can be addressed!
* That's twice from the earth to the sun and back!

Binghamton CS-220

University Spring 2016

But that's not all that changed!

e JA64 has a whole new set of conventions!
* We won't study, but we will go through an example

Binghamton CS-220

University Spring 2016

C Code...

See http://www.cs.binghamton.edu/~tbartens/CS220 Spring 2016/examples/xmp swap/

int main(int argc, char **argv) {

Int X,y;
x=atoi(argv[1]); y=atoi(argv[2]); void swap(int *xp, int *yp) {
swap(&x,&y); int t0 = *xp;
} int t1 = *yp;
*Xp = tl;
*yp = t0;

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2016/examples/xmp_swap/

Binghamton CS-220

University Spring 2016

Stack before OS transfers to main...

Oxfffc

(ebp) argv o—
argc=2
(esp) return to OS O—

0x0000

Binghamton CS-220

University Spring 2016

X86 prologue for “main”

main: pushl %ebp ; save base pointer on stack
movl %esp, %ebp ; Reset base pointer to current stack pointer
andl $-16, %esp ; esp = esp & 0xfff0 - start on qword boundary
subl $32, %esp; Allocate 32 bytes for locals (int x,y)

Binghamton CS-220

University Spring 2016

main preamble

Oxfffc

(ebp) argv
argc=2

return to OS

N

main: [pushl %ebp]
movl %esp, %ebp
andl $-16, %esp
subl $32, %esp

(esp) old ebp

0x0000

Binghamton CS-220

University Spring 2016

main preamble

Oxfffc

argv
argc=2

main: pushl %ebp return to OS
[movl%esp, %ebp] ERIERI R
andl $-16, %esp
subl $32, %esp

N

0x0000

Binghamton CS-220

University Spring 2016

main preamble

Oxfffc
argv

argc=2

main: pUShl %ebp return to OS
movl %esp, %ebp (esp), (ebp) old ebp

andl $-16, %esp |
subl $32’ %esp

0x0000

Binghamton CS-220

University Spring 2016

main preamble

Oxfffc
argv

argc=2
return to OS
(ebp) old ebp

main: pushl %ebp
movl %esp, %ebp
andl $-16, %esp
[subl $32, %esp] E=p)

0x0000

Binghamton CS-220

University Spring 2016

Stack after main preamble...

Oxfffc
(ebp)+12 ' argv

argc

return to OS
(ebp) old ebp

(esp)

0x0000

Binghamton CS-220

University Spring 2016

x=atoi(argv|[1])

movl 12(%ebp), Y%eax
addl $4, %eax
movl (%eax), %eax

movl %eax, (%esp)
call atoi
movl %eax, 28(%esp)

Binghamton CS-220

University Spring 2016

y=atoi(argv|2]);

movl 12(%ebp), Y%eax
addl $8, %eax
movl (%eax), %eax ‘5" 0x00

movl %eax, (%esp)

call atoi
movl %eax, 24(%esp)

Binghamton CS-220

University Spring 2016

Stack after atol calls...

Oxfffc
(ebp)+12 ' argv
argc
return to OS
(ebp) old ebp
x=3
y=5
(esp)

0x0000

Binghamton CS-220

University Spring 2016

main invocation of swap

Oxfffc

movl %eax, 4(%esp)
leal 28(%esp), Yoeax y=5
movl %eax, (%esp)

call swap (esp)

x=3

(ebp)+12 argv
argc
1 1 2 4 O/ (y return to OS
{ea (%esp), Yeax } FE I

&y

0x0000

Binghamton CS-220

University Spring 2016

main invocation of swap

Oxfffc

movl %eax, 4(%esp) o

leal 28(%esp), %eax y=5
{movl %eax, (%esp)

call swap

(ebp)+12 | argv
argc
leal 24(%651)), %eaX return to OS
(ebp) old ebp

&y
(esp) &x

0x0000

Binghamton CS-220

University Spring 2016
Stack at start of swap...

Oxfffc
(ebp)+12 argv

argc

return to OS
(ebp) old ebp

x=3

o)

(esp)

0x0000

Binghamton CS-220

University Spring 2016

swap prologue

swap: pushl %ebp
movl %esp, %ebp
subl $16, %esp

Binghamton CS-220

University Spring 2016

swap prologue

Oxfffc
(ebp)+12 argv

argc

return to OS
(ebp) old ebp

x=3

movl %esp, %ebp =
oubl $16,Yesp 4
e

(esp) main’s ebp

[swap: pushl %ebp]

0x0000

Binghamton CS-220

University Spring 2016

swap prologue

Oxfffc
(ebp)+12

swap: pushl %ebp
'movl %esp, %ebp |
subl $16, %esp

(esp),(ebp) ~main’s ebp

0x0000

Binghamton CS-220

University Spring 2016

Stack after swap prologue

Oxfffc
x=3
y=>5 D
&y
&x
return to main
(ebp) main’s ebp
(esp)

0x0000

Binghamton

CS-220

University

swap guts

movl
movl
movl
movl
movl
movl
movl
movl
movl
movl
movl
movl

8(%ebp), Yoeax
(Y%eax), %eax
%eax, -4(%ebp)
12(%ebp), %eax
(%eax), Y%eax
%eax, -8(%ebp)
8(%ebp), Y%eax
-8(%ebp), Y%edx
%edx, (Yoeax)
12(%ebp), %eax
-4(%ebp), Yedx
%edx, (Yeax)

r eax=&x

; eax="*(&x)=x=3
:t0=eax=3

; eax=&y

; eax="(&y)=y=5
:tl=eax=5

r eax=&x
:edx=t1=5

; *eax (or x)=edx=5
; eax=&y

: edx=t0=3

; *eax (ory)=3

Spring 2016

Binghamton CS-220

University Spring 2016

Stack after swap guts

Oxfffc

x=5

&y

&x

return to main
(ebp) main’s ebp
(esp)

0x0000

Binghamton CS-220

University Spring 2016

Stack after swap return

Oxfffc
(ebp) old ebp

(esp)

0x0000

Binghamton CS-220

University Spring 2016

|A64 Register Conventions

* First four parameters are contained in registers:
%RDI, %RSI, %RCX, %RDX

* Local Variables kept in registers:
e.g. % RBP, % RBX

e Return value: %RAX

 Bottom of Stack: %RSP

Binghamton CS-220

University Spring 2016

|A64 Stack Usage

* No longer use %RBP to keep track of “top of stack frame”

* Require %RSP is the same before/after a call (among others)
* Use stack to keep saved state

* Use stack for parameters if there are more than 4

* Use stack for local variables if you run out of registers

e Use stack for return address
* Only use stack if necessary

Binghamton CS-220

University Spring 2016

64-bit code for swap

* Operands passed in registers
* 64-bit pointers
* First (xp) in %rdj,

swap: _ _
} E‘;t » second (yp) in %rsi
o < * All local variables in registers
movl (frd%) ' fedx * t0 in %eax, t1 in %edx
mov 1l ($rsi1), %eax > Body _ _
movl %eax, (%rdi) * No stack operations required
movl gedx, (%rsi) J . 32-b1t data
ret } Finish * Data held in registers %eax and %edx

* movl operation

